Skip to main content
Global

PhotoEnergy

  • Page ID
    487
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Developing the sophisticated devices necessary to harnesses solar energy is one of the greatest scientific, technological, and economic challenges of our time. The goal of this
    research line is to understand and apply the information on the rapid dynamics of charge separation, transfer and eventual recombination toward developing novel materials capable of coupling incident solar radiation into useful energy. To this end, we explore two strongly interconnected photoenergy topics: (1) organic polymers and (2) inorganic nanoparticle-base photovoltaic materials.

    The efficiency of real devices critically depends on the photophysics of the material. Absorption of photons generate an electron-hole pairs, and these charges must be separated so that they may be  either collected as current (photovoltaics) or allowed to participate in redox chemistry (photocatalysis). Dynamics on sub-nanosecond timescales dictate the overall efficiency of charge separation. We use time-resolved optical spectroscopies to characterize these fast processes and how they influence efficiency in novel nanoscale materials designed by our collaborators in Chemistry and Chemical Engineering. 

      Topical Publications

      • Ultrafast Exciton Dynamics in Colloidal Aluminum Phosphide Nanocrystals, Erik Busby, Arthur Thibert, Jack Fuzell, Deisy C. Arrington, Ali M. Jawaid, Preston T. Snee, Delmar S. Larsen, Chem. Phys. Letters, in press (2013). pdf
      • Packing Dependent Electronic Coupling in Single Poly(3-hexylthiophene) H- and J-Aggregate Nanofibers, Thomas P. Martin, Adam J. Wise, Erik Busby, Jian Gao, John D. Roehling, Michael J. Ford, Delmar S. Larsen, Adam J. Moulé, John K. Grey, J. Phys. Chem. C, in press (2012). pdf
      • Femtosecond Ligand/Core Dynamics of Microwave Assisted Synthesized Silicon Quantum Dots in Aqueous Solution, Tonya M. Atkins, Arthur Thibert, Delmar S. Larsen, Sanchita Dey, Nigel D. Browning, and Susan M. Kauzlarich, Journal of the American Chemical Society, 133 (51), pp 20664–20667 (2011). pdf
      • Sequestering High-Energy Electrons to Facilitate Photocatalytic Hydrogen Generation in CdSe/CdS Nanocrystals, Arthur Thibert, F. Andrew Frame, Erik Busby, Michael Holmes, Frank E. Osterloh, Delmar S. Larsen, Journal of Physical Chemistry Letters, 2011, 2, pp 2688–2694 (2011). pdf
      • Excited-state Self-Trapping and Ground-state Relaxation Dynamics in Poly(3-hexylthiophene) Resolved with Broadband Pump-Dump-Probe Spectroscopy, Erik Busby, Elizabeth C. Carroll, Erin M. Chinn, Lilian Chang, Adam J. Moulé, and Delmar S. Larsen, Journal of Physical Chemistry Letters2, 2764–2769 (2011). pdf
      • Primary Photodynamics of Water Solubilized Two-Dimensional CdSe Nanoribbons, Arthur Thibert, F. Andrew Frame, Erik Busby, Delmar S. Larsen, Journal of Physical Chemistry C, 115, 19647–19658 (2011). pdf
      • Acceptor Dependence of the Polaron Recombination in Poly 3-hexyl thiophene:Fullerene Composite Films, Erik Busby, Christopher W. Rochester, Adam J. Moulé, Delmar S. Larsen, Chemical Physics Letters, 513, 77–83 (2011). pdf
      • CdSe Nanoribbons as Photocatalysts for Hydrogen Evolution from Water, Andrew F. Frame; Elizabeth Carroll, Delmar S. Larsen, Michael Sarahan, Nigel Browning, Frank Osterloh, Chem. Commun. 2206-2208 (2008). pdf
      • Ultrafast Carrier Dynamics in Exfoliated and Functionalized Calcium Niobate Nanosheets in Water and Methanol, Elizabeth Carroll, Owen Compton, Dorte Madsen, Frank Osterloh, Delmar Larsen, Journal of Physical Chemistry C, 112, 2394-2403 (2008). pdf
      • Photocatalytic Water Splitting with Individually Dispersed Calcium Niobate Semiconductor Nanosheets,Owen C. Compton, Elizabeth C. Carroll, Jin Y. Kim, Delmar S. Larsen, Frank E. Osterloh, Journal of Physical Chemistry C, 14589-14592 (2007). pdf